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Resumé

I dette projekt undersøger vi protokollen Chord som modellerer en distribueret
hashtabel i et peer-to-peer netværk. Vi g̊ar i dybden med hvordan protokollen
kan stabilisere sig selv efter knuder i netværket svigter. I anden del kigger
vi p̊a hvordan Chord protokollen med svigtene knuder kan opstilles som en
formel specifikation med værktøjet TLA+. Vores specifikation opbygges som en
udvidelse af de specifikationer, af den basale Chord protokol uden knudesvigt,
som er udarbejdet i [1]. Til sidst bruger vi modeltjekker-værktøjet TLC til at
verificere at vores specifikation er korrekt, og undersøger resultaterne herfra.
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Chapter 1

Introduction

Distributed systems play a critical role in modern server infrastructure, where
services are expected to handle thousands of requests per second, to be highly
available and respond quickly to requests from all over the world.

But making distributed systems robust and error-free is notoriously hard
as the number of possible states and interactions between just a few actors
quickly expand exponentially to the thousands or even millions, which makes
the system very hard to reason about and debug. Traditional software testing
methods, such as unit and integration testing, do not apply well to distributed
systems, as they are not well suited for testing these many possible interactions.

Formal specifications try to solve this problem by separating the design of
the system from the implementation. A formal specification describes the design
of a system in a higher level than code would, but it is precise enough that it can
be verified by a model checker, a computer program that explores all possible
states in the model and checks that the specified properties and invariants always
hold. This not only helps to test the validity of the system, but it also forms as
documentation of the system which can be used by engineers to implement or
validate existing implementations.

In the thesis by [1] they introduce a formal specification for a distributed
hash table (DHT) using the modeling language TLA+ [3]. They model the
fundamental routing properties of the Chord algorithm as well as the finger
table used for scalable lookups. These models assume that there are no failures
in the system, that is nodes will always be available and will respond to all
requests.
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In practice distributed systems must be able to handle node failures as it is
inevitable for nodes to fail, especially as the network scales. This is often done
by introducing redundancy into the system, such that when a node fails the rest
of the system has the proper knowledge needed to continue. But this is also one
of the strengths of a distributed system as it is what makes it highly available.

In this project, we expand upon the specification made by [1] to model
failures in the system. The Chord paper [4] proposes a method to account for
failures, by storing a list of successor nodes in such a way that as long as one of
the nodes in the list is available, the system can always recover.
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Chapter 2

The Chord protocol

The Chord protocol, proposed in [4], models a distributed hash table (DHT).
Each node in the network forms a ring where nodes only know about their
immediate successor and predecessor. Each node is associated with a key in the
keyspace of the hash table, typically a hash of its IP address. The node is then
responsible for all the keys that lie between the key of its predecessor and its
own key.

2.1 Simple lookup

At its core, the Chord protocol only provides a single functionality to the user,
the i .Lookup(key) function, which finds the data object associated with the
given key in the network.

Since each node knows its successor and predecessor, it can determine whether
itself is responsible for the key by checking if key lies between the key of its prede-
cessor and itself. If that is the case, the node has the data locally and can return
it directly. Otherwise, it instead forwards the request to its successor, where
the operation is performed recursiveley until the responsible node is found.

Figure 2.1 shows an example of performing lookup in a Chord ring with 7
nodes. The lookup action is initiated at node N28, looking for key K8. Since
the key does not lie between the predecessor of the node (N23) and the node
itself, it forwards the request to its successor, N63. The request is propagated
through the ring until it reaches N18, who is responsible for the keyspace (5, 18]
where the key lies within and the key is now located.

Internally Chord uses the similar i .LocateSuccessor(key) function, which
is shown in alg. 1. It does the same as Lookup, but it instead returns the
successor of the node responsible for the key . This function is used when new
nodes join the network and when stabilizing.
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Figure 2.1: An example of simple lookup in a Chord ring. From fig. 18.2 in [2].

Algorithm 1 Based on alg. 18.1 in [2].
Algorithm executed at node i , that locates the successor to the key .

Variables: successor , predecessor

function i .LocateSuccessor(key)
if key ∈ (i , successor ] then

return successor
else

return successor .LocateSuccessor(key)
end if

end function

Scalable lookup Besides the simple lookup algorithm which requires O(n)
network hops, there exists a scalable lookup function that using a finger table
reduces the required hops to O(log n). This is however not the focus of this
project and will not be expanded further upon.

2.2 Churn

Churn relates to nodes joining and leaving the network dynamically. Since the
system is distributed, all nodes will not always have a complete picture of all
the nodes in the network. Therefore it is important that the ring is kept in a
safe state even when new nodes are in the process of joining and leaving.
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Definition 1 (Safe ring1) A ring is safe when:

1. Each node’s successor is correctly maintained.

2. For every key k, node successor(k) is responsible for k.

This is made possible by utilizing the fact that lookup in the ring always goes
around in the same direction following each nodes successor.

This means that a new node can join the ring without its immediate nodes
knowing about it, and the ring will still be safe, that is the i .Lookup(key)
function still works for all i ∈ Nodes.

A node i joins the ring by asking some node j that is already a part of the
ring, to locate the successor of the joining node i . Node i will set its successor
variable to the returned node and thus add itself as an appendage to the ring.
At this point the appending node has not fully joined the ring but is still able
to perform the i .LocateSuccessor(key) correctly.

Algorithm 2 Based on Alg 18.3 in [2].
Function for node i to join the ring, given any node j already in the ring.

Variables: successor , predecessor

function i .JoinRing(j ) ▷ where j is any node on the ring to be joined
predecessor ← ⊥
successor ← j .LocateSuccessor(i)

end function

2.3 Stabilization

Each node periodically executes the stabilize function (alg. 3). This function
first asks its successor for its predecessor, ideally this should be the same node
as the one performing the stabilization. But in cases where the ring is not ideal,
the successing node does not necessarily know about this node. For example
when the node has just joined the network by executing i .JoinRing(j ).

If x lies exclusiveley between i and the node which i believes to be its
successor, then x is closer to i than its current successor and i makes x its new
successor. Lastly i calls the Notify function on its successor node, notifying
its successor that it thinks it is its predecessor.

The Notify function on the other node then checks if the calling node is
a better predecessor than its current one and transfers the keys that the new
predecessor should be responsible for, as well as updates its predecessor variable.

1The two invariants are proposed in [4], chapter 4.4
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Algorithm 3 Based on Alg 18.3 in [2].
Stabilize function that is executed periodically.

Variables: successor , predecessor

function i .Stabilize
x ← successor .predecessor
if x ∈ (i , successor) then

successor ← x
end if
successor .Notify(i)

end function

function i .Notify(j ) ▷ j believes it is predecessor of i
if predecessor = ⊥ or j ∈ (predecessor , i) then

transfer keys in range [j , i) to node j
predecessor ← j

end if
end function

The stabilize function ensures that existing nodes eventually learn about new
nodes, and that new nodes become a part of the ring, while keeping the ring
safe at all times.

2.4 Failures

The algorithms described earlier in this chapter has all assumed no failures in the
network. To make the protocol fault-tolerant, the paper [4] proposes that each
node, instead of maintaining only its direct successor, instead maintains a list
of its first k successors. This way, if a node suddenly cannot reach its successor
it can try the next in its list until a reachable replacement is located. This
means that LocateSuccessor becomes LocateSuccessors (plural) and now
returns a successor list rather than a single one (see appendix A).

The new FaultStabilize will now have to account for the possibility of
nodes being unreachable. This is done by trying to reach each successor in
the successors list from the beginning. If the node does not respond within a
predetermined time, the request will timeout and the next successor in the list
will be used instead. When the first successor responds, the function proceeds
in much of the same way as the Stabilize function proposed earlier in alg. 3.
Except that it updates the whole successor list rather than a single value.

The i .CheckPredecessor function is also introduced, which is also exe-
cuted periodically and makes sure that node i ’s predecessor is still active. It
simply checks if the predecessor is still reachable and removes it if that is not
the case.
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Algorithm 4 Fault-tolerant stabilize.

Variables: successors[1..k ], predecessor

▷ returns predecessor and successors in a single request
function i .PredecessorAndSuccessors

return (predecessor , successors)
end function

function i .FaultStabilize ▷ executed periodically
for count ← 1 . . . k do

try
s ← successors[count ]
(p, ss)← s.PredecessorAndSuccessors
if p ∈ (i , s) then

successors ← [ p ]
else

successors ← [ s | ss[1..(k − 1)] ]
end if
successors[1].Notify(i)
return

after timeout continue to next loop iteration
end for
raise ”no reachable successors”

end function

function i .CheckPredecessor ▷ executed periodically
if predecessor has failed then

predecessor ← ⊥
end if

end function
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2.4.1 Node failure example

Fig. 2.2 shows a diagram consisting of 6 states that demonstrates an example
of a node failing and the steps the system takes to recover from it.

(a) Initially the system is in an ideal state. Each node’s successor list correctly
points to its immediate successor and the next successor after that.

(b) Node 2 fails and the rest of the network does not know about this yet.
The remaining nodes will eventually recover and become ideal again after
enough executions of FaultStabilize and CheckPredecessor.

(c) Node 3 performs CheckPredecessor and it notices that its predecessor
has failed and updates its predecessor value to ⊥.

(d) Node 1 performs FaultStabilize, it notices that its successor has failed
and finds the first node that is alive from its successors list, in this case
node 3. Node 1 then updates its successors to ⟨3⟩, and calls Notify
on node 3, passing itself as the argument. Node 3 will now update its
predecessor value to 1 since its current value is ⊥.

(e) Node 1 will then perform FaultStabilize again, this will update its suc-
cessors list to contain the successors of its new successor (node 3).

(f) Node 4 executes FaultStabilize twice, first time it notices that its first
successor has failed and updates its successors list to ⟨1⟩. The second exe-
cution will fetch the successors of its new successor, and its final successors
list becomes ⟨1, 3⟩.
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First successor
Second successor
Predecessor

2
s: ⟨4, 1⟩,
p: 2

s: ⟨3, 4⟩,
p: 1

s: ⟨1, 2⟩,
p: 3

s: ⟨2, 3⟩,
p: 1
14

3

(a) System starts as an
ideal ring.

s: ⟨4, 2⟩,
p: 2

s: ⟨1, 2⟩,
p: 3

s: ⟨2, 3⟩,
p: 4
14

3

(b) After node 2 fails.

s: ⟨4, 1⟩,
p: ⊥

s: ⟨1, 2⟩,
p: 3

s: ⟨2, 3⟩,
p: 4
14

3

(c) After node 3 runs
CheckPredecessor.

s: ⟨4, 1⟩,
p: 1

s: ⟨1, 2⟩,
p: 3

s: ⟨3⟩,
p: 4
14

3

(d) After node 1 runs
FaultStabilize and
node 3 runs Notify as a
result.

s: ⟨4, 1⟩,
p: 1

s: ⟨1, 2⟩,
p: 3

s: ⟨3, 4⟩,
p: 4
14

3

(e) After node 1 again
runs FaultStabilize.

s: ⟨4, 1⟩,
p: 1

s: ⟨1, 3⟩,
p: 3

s: ⟨3, 4⟩,
p: 4
14

3

(f) After node 4 runs
FaultStabilize twice.

Figure 2.2: Example of a node failure in a ring with 4 nodes.
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Chapter 3

Modeling the specification
with TLA+

The Chord TLA+ specification builds on top of the work by [1]. With the
major difference that the successor variable, a map from Node → Node has
been replaced by the successors variable, which instead maps nodes to a list of
succeeding nodes.

A failures variable has also been added which will be expanded on in section
3.5, up until that section, this variable will simply hold the value of the empty
set.

The specification is made along with three configuration models, that each
build on top of the previous. The first one is ChordBase.cfg, this model checks
that the static structure of Chord is correct. The second one, ChordChurn.cfg,
checks that when churn is introduced, the structure will always be safe and it
will converge towards an ideal ring. And lastly, ChordFailures.cfg introduces
the possibility for nodes to fail and checks that when that happens, the structure
will eventually become safe again.

A TLA+ specification consists of three parts, the definition of a valid initial
state, the allowed transitions between states and lastly a set of safety properties
that the model checker will verify are not violated. The ChordBase.cfg config-
uration only models the static structure of Churn, that is, it does not allow any
transitions between states. This will later be introduced in section 2.2 and 3.5.
We start by modeling the valid initial states of the successors variable.

3.1 Modeling successors in TLA+

The successors list is modeled in the TLA+ specification by the SuccessorType-
Invariant. This states that the successors variable must be in the set of all
functions that map nodes to a sequence of successor nodes.

[ Node → { (s1, s2, . . . , sn) | si ∈ Node, 0 ≤ n ≤ K } ] ,
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where K is the size of the successor list and (s1, s2, . . . , sn) is strictly ordered.

SuccessorTypeInvariant

StrictlyOrdered(s)
∆
= ∀ i ∈ 2 . . Len(s) : s[i − 1] < s[i ]

NodeSucessorList
∆
= union {[1 . . m → Nodes] : m ∈ 0 . . K}

SuccessorListOrdered(s)
∆
=

let alive s
∆
= SelectSeq(s, lambda x : ¬HasFailed(x ))

in Len(alive s) > 0 =⇒ ∃m ∈ 1 . . Len(alive s) :
StrictlyOrdered(

SubSeq(alive s, m + 1, Len(alive s)) ◦ SubSeq(alive s, 1, m))

IsSuccessorList(s)
∆
=

∧ s ∈ Seq(Nodes)
∧ Len(s) ≤ K
∧ SuccessorListOrdered(s)

Spec 3.1: Modeling of successors list in TLA+

One of the most fundamental things to the model is the modeling of the suc-
cessors list. The chord algorithm, unlike the predecessor variable, expects the
successors to always be correct in order for the ring to be safe.

The IsSuccessorList(s) property, in spec. 3.1, checks whether s has the
structure of a valid successor list. s must be a sequence of nodes with length at
most K , this is the length of the successor list defined in the model configuration.
The list must also be ordered as specified in SuccessorListOrdered(s). This
property checks whether s without failed nodes is ordered in a ring. It does
so by checking to see if there exists a way to split the list, such that the two
partitions individually are strictly ordered from low to high.

3.2 Verifying the static structure of Chord

The ChordBase.cfg configuration, uses the following specification to verify that
the successors and predecessors at the beginning always represent a valid ring,
and that simple routing in the ring works.

The SpecAnyRing specification (spec. B.1 in the appendix) consists of two
properties, SuccessorAnyRing and PredecessorSafety which make sure the suc-
cessors and predecessor variables respectiveley model an ideal ring. It also
specifies that all of the variables must never change. This way only the static
start configurations of the protocol is considered.

Definition 2 (Ideal ring) A ring is ideal when:

� Following the first successor in the successors list of each node form
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exactly one ring.

� The ring is ordered.

� Either a node is a part of the ring directly or an appendage to the
ring.

When the ring is ideal the simple routing invariants (spec. 3.2) should always
be maintained.

Some of the invariants only apply for reliable intervals. A key i lies in a
reliable interval from a node j , when j is expected to know the correct node
responsible for key i . It might be the case that an appending node wrongly
believes that there are no nodes between itself and its immediate successor, and
thus the in-between keys are unreliable.

� LocateDirectSuccessor : Any node that has joined the ring should route all
keys between itself and its first successor to the first successor.

� LocateSelf : When node i is a part of the ring, node j has joined and i lies
in a reliable interval from j , then locating the successor of i from j should
return i itself.

� LocateSameSuccessor : For any pair of joined nodes i , j and for all keys
in a reliable interval from both nodes, each node should locate the same
node given the same key.

� LocateInRing : For all joined nodes i and all reliable keys key , then from
i locating the successor of key should return a node that forms a ring.

SimpleRoutingSafety

LocateDirectSuccessor
∆
=

∀ i ∈ Nodes : HasJoined(i)
=⇒ ∀ key ∈ Addresses : BetweenRightClosed(key , i , FirstSuccessor(i))

=⇒ LocateFirstSuccessor(key , i) = FirstSuccessor(i)

LocateSelf
∆
=

∀ i , j ∈ Nodes :
∧ FormsRing(i)
∧HasJoined(j )
∧ InReliableInterval(i , j )
=⇒ LocateFirstSuccessor(i , j ) = i

14



LocateSameSuccessor
∆
=

∀ i , j ∈ Nodes : (HasJoined(i) ∧HasJoined(j ))
=⇒ ∀ key ∈ Addresses :
∧ InReliableInterval(key , i)
∧ InReliableInterval(key , j )

=⇒ LocateFirstSucessor(key , i) = LocateFirstSuccessor(key , j )

LocateInRing
∆
=

∀ i ∈ Nodes : HasJoined(i)
=⇒ ∀ key ∈ Addresses : InReliableInterval(key , i)
=⇒ FormsRing(LocateFirstSucessor(key , i))

SimpleRoutingSafety
∆
=

∧ LocateDirectSuccessor
∧ LocateSelf
∧ LocateSameSuccessor
∧ LocateInRing

Spec 3.2: Simple routing invariants

3.3 Modeling churn in TLA+

The ChordChurn.cfg configuration, introduces specifications for i .JoinRing(j )
and i .Stabilize(). It introduces the ChurnNext property which for each
temporal step either joins a new node or stabilizes an existing one.

ChurnNext

ChurnNext
∆
=

∧NoFailures
∧ ∃ i ∈ Nodes :
∨ Join(i)
∨ Stabilize(i)

Join A node i can join the ring when it has not already joined and it has
not failed. It also requires that there exists a node j that i can use to join the
network from. Since j will use LocateSuccessors to guide i to its correct place
in the ring, Join requires that j can find the successor of i which is not always
the case later when failures are introduced. Node i then joins the network by
updating its successors variable to the result of the LocateSuccessors call.

Below, in spec. 3.3, the third and forth conjuncture of the join procedure
initially might seem to be duplicates of one another. But this is needed since
the model checker will throw an exception if it tries to execute choose on an
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empty set. The line before discards the join call if there exists no node that i
can use to join the ring.

Join

CanJoin(i , j )
∆
=

∧ HasJoined(j )
∧ LocateSuccessors(i , j ) ̸= LocateSuccessorError

Join(i)
∆
=

∧ ¬HasJoined(i)
∧ ¬HasFailed(i)
∧ ∃ j ∈ Nodes : CanJoin(i , j )
∧ let j

∆
= choose j ∈ Nodes : CanJoin(i , j ) in

∧ successors ′ = [successors except ! [i ] = LocateSuccessors(i , j )]
∧ unchanged ⟨failures, predecessor⟩

Spec 3.3: TLA+ implementation of i .JoinRing(j ) from alg. 2.

Stabilize A node can be stabilized only if it has joined the ring. To model the
outer for-loop of the i .FaultStabilize() function in alg. 4, the unreachable
successor nodes are removed from the successors[i ] list and the result is binded
to the succs variable. Next the s, p and ss variables from the pseudocode are
calculated. If p, the successors predecessor, lies between i and s then clear the
existing successor list and use ⟨p⟩ as the new successor list. Otherwise prepend
⟨s⟩ to ss and clean the list to ensure that the new successors list does not contain
any duplicates.

Next the successors ′ list is assigned to account for the changes and Notify is
called on the new first successor of i . This makes sure to update the predecessor
of i ’s successor if i is closer to it than its current predecessor is.
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Stabilize

Notify(i , j )
∆
=

if ¬HasPredecessor(i) ∨ ExBetween(j , predecessor [i ], i)
then predecessor ′ = [predecessor except ! [i ] = j ]
else unchanged predecessor

Stabilize(i)
∆
=

∧HasJoined(i)
∧ let succs

∆
= RemoveUnreachableSucessors(successors[i ])

s
∆
= Head(succs)

p
∆
= predecessor [s]

ss
∆
= successors[s]

new succs
∆
=

if ExBetween(p, i , s) ∧HasJoined(p) then ⟨p⟩
else CleanSuccessors(⟨s⟩ ◦ ss)

in
∧ successors ′ = [successors except ! [i ] = new succs]
∧Notify(Head(new succs), i)

∧ unchanged failures

Spec 3.4: TLA+ implementation of i .Stabilize() and i .Notify(j ) from alg.
3.

3.4 Properties of churn

The model checker runs the churn configuration it checks for the following three
liveness properties.

NodesNeverLeave
∆
=

2(∀ i ∈ Nodes : FormsRing(i) =⇒ 2(FormsRing(i))

The NodesNeverLeave property checks that once a node joins the ring it never
leaves. Formally it states that it is always the case that for all nodes i , if i forms
a ring then it will always form a ring.

StaysFullIdealRing
∆
=

32(SuccessorFullRing ∧ IdealRing)

The StaysFullIdealRing property checks that eventually the ring will always
become full and ideal. This is because churn only allows for nodes to join and
stabilize, and since the join and stabilize actions impose weak fairness for each
node, the actions that are able to run will always do so until the ring is full and
ideal.
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3.4.1 Fairness

TLA+ has the concept of stuttering, this means that by default any state can
stutter, meaning that it transitions to the same state as it came from and thus
does not make any progress. This concept makes it manageable to compose
TLA+ specifications, for example in a composition of two specifications, one
can make progress while the other one stutters.

This, however, causes problems when introducing temporal properties such
as StaysFullIdealRing, which expects the ring to eventually become ideal, but if
the specification is allowed to stutter, then there is nothing stopping the speci-
fication from performing stuttering steps indefinetley and never make progress,
in this case the ring will never become ideal and the property will be violated.

To solve this, TLA+ has the concept of weak and strong fairness, where
weak fairness means that if an actions can always be performed, then it will
eventually be performed. Strong fairness is stricter and guarantees that if an
action alternates between being able to be performed and not being able to, then
it will eventually be performed. In our case, and in most cases, weak fairness is
enough.

FairChurn
∆
=

∧ ∀ i ∈ Nodes :
∧WFvars(Join(i))
∧WFvars(Stabilize(i))

As for churn, the FairChurn property has been added, which states that the
join and stabilize actions for each node impose weak fairness, this means that
all configurations of join and stabilize will eventually be run and will not stutter
indefinetley.

3.5 Modeling failures in TLA+

When modeling failures we introduce the FailNode(i) and CheckPredecessor(i)
functions to the next part of the specification.

RecoverableAfterFail We also introduce the RecoverableAfterFail function,
which computes whether the network will be in a recoverable state after node i
fails. This function would not exist in a concrete implementation of the specifi-
cation, but it restricts the model checker to only calculate states that we expect
to be recoverable.

A node that has not joined the network yet is always safe to fail, since no
other node depend on it yet. If a node i has joined, then it is only safe for it to
fail, when all nodes whose first successor is i can reach i ’s successor, and when
i is not the only node in the ring.
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RecoverableAfterFail
RecoverableAfterFail(i)

∆
=

HasJoined(i) =⇒
∧ ∀n ∈ Nodes : FirstReachableSuccessor(n) = i =⇒

FirstReachableSuccessor(i) ∈ SeqToSet(successors[n])
∧ FirstReachableSuccessor(i) ̸= i

Spec 3.5: Function that evaluates whether the ring can recover if node i fails.

CheckPredecessor The CheckPredecessor property, like Stabilize from spec.
3.4, can be evaluated at each next step in the specification. And would in
practice be run periodically on each node in the network. The property is
only considered if node i has joined. If the predecessor of i has failed, then its
predecessor value is set to⊥, which is represented as 0 in the TLA+ specification.

CheckPredecessor
CheckPredecessor(i)

∆
=

∧HasJoined(i)
∧ if predecessor [i ] ∈ failures

then predecessor ′ = [predecessor except ! [i ] = 0]
else predecessor ′ = predecessor

∧ unchanged ⟨successors, failures⟩

Spec 3.6: TLA+ implementation of i .CheckPredecessor from alg. 4.

FailNode At each next iteration of the specification, any node i that has not
yet failed can fail, if the ring is recoverable after it does so. When this happens,
i will be added to the set of failed nodes, and its successor list and predecessor
values are reset to avoid redundant states and keep the possible states as small
as possible.

FailNode
FailNode(i)

∆
=

∧ ¬HasFailed(i)
∧ RecoverableAfterFail(i)
∧ failures ′ = failures ∪ {i}
∧ successors ′ = [successors except ! [i ] = ⟨⟩]
∧ predecessor ′ = [predecessor except ! [i ] = 0]

Spec 3.7: Simulate a node failing in TLA+.
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3.5.1 Failure properties

It is not as easy to describe properties for failures as it is for churn, since churn
converges toward an ideal ring and the ring is expected to always be safe. When
failures are introduced, this is not the case anymore. Instead, when a node fails
the ring can become unsafe and requests such as i .LocateSuccessor(key)
might fail until the ring self-stabilizes.

The ring should be able to always recover and become safe after it has had
the chance to stabilize itself. In TLA+ this can be described as

RingAlwaysRecover
∆
= 23(SuccessorAnyRing),

which states that it is the case that the ring will always eventually become safe.
Where a safe ring in the specification is defined as a ring where the successors
variable represent any valid ring.

The NodeStaysFailed property ensures that once a node fails it will always
stay failed.

NodeStaysFailed
∆
=

2(∀ i ∈ Nodes : HasFailed(i) =⇒ 2(HasFailed(i)))

20



Chapter 4

Evaluation

4.1 Model checker results

The specification has been checked with the TLC model checker using the three
configurations ChordBase.cfg, ChordChurn.cfg, ChordFailures.cfg, and the
results can be seen in the respective subtables of table 4.1. The left most column
describes the model parameters N , the number of nodes, and K , the length of
the successor list. For each configuration the number of states and of which are
unique in parenthesis, the diameter of the graph ie. the longest path found and
lastly how long it took the model checker to check the specification with the
given configuration.

The model checker did not find any property violations for any of the con-
figurations of the final specification, which means that we can say with great
certainty that the specification is correct.

It makes sense for the diameter for the base configuration to always be
one, since that configuration does not contain any transitions and thus it only
calculates and verifies initial states. The churn configuration produces a larger
diameter than the failures configuration, since when a node fails, that node can
not make any more progress that could contribute to the diameter increasing.
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Base
Constants States Diameter Time

N = 1 K = 1 2 (1) 1 02s
N = 2 K = 2 10 (5) 1 02s
N = 3 K = 3 56 (28) 1 20s
N = 4 K = 2 422 (211) 1 3h 15m 24s
N = 4 K = 3 422 (211) 1 1d 1h 42m 29s

(a) Base configuration

Churn
Constants States Diameter Time

N = 1 K = 1 3 (2) 2 02s
N = 2 K = 2 30 (14) 6 03s
N = 3 K = 3 453 (140) 10 24s
N = 4 K = 2 7856 (1749) 15 3h 24m 06s
N = 4 K = 3 11208 (2563) 16 1d 2h 15m 29s

(b) Churn configuration

Failures
Constants States Diameter Time

N = 1 K = 1 5 (2) 2 02s
N = 2 K = 2 119 (33) 6 03s
N = 3 K = 3 3874 (708) 8 24m 48s
N = 4 K = 2 122391 (15491) 10 2d 18h 21m 29s
N = 4 K = 3 - - - -

(c) Failures configuration.

Table 4.1: TLA+ model checker results
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4.2 Examining the state diagram

Running the model checker on very small inputs produces such few states that
they can be drawn in a diagram and examined. Such a state diagram for the
failures configuration with two nodes, producing 33 unique states, is shown
on fig. 4.1. Here each node represents a unique state and an arc between
to nodes represents either a Join, FaultStabilize, CheckPredecessor or FailNode
state transition.

The first diagram on fig. 4.1a shows an overview of the produced states, but
without the variables of each state. The next diagram on fig. 4.1b shows an
expanded view of a subset of the states with the values of the variables at each
state.

4.3 Things not modeled

In practice it would be convenient for a node to gracefully leave the system,
by notifying its neighbours about its departure and simultaneously transfer its
keys to its successor, rather than directly failing and potentially losing data.
This was not modeled since it did not add much new and would increase the
complexity and thus the evaluation time of the model substantially.

Another aspect that was not considered in this project is data replication
where keys would be split out over multiple nodes in the system, such that
when a node fails the other nodes in the network have the necessary information
needed to reconstruct the keys of the failed node.

23



(a) Overview of the state diagram. Fig. 4.1b shows an expanded view of the top left
highlighted subgraph.

failures = {}
predecessor = ⟨0, 0⟩
successors = ⟨⟨1⟩, ⟨ ⟩⟩

∧
∧
∧

failures = {}
predecessor = ⟨1, 0⟩
successors = ⟨⟨1⟩, ⟨ ⟩⟩

∧
∧
∧

failures = {}
predecessor = ⟨1, 0⟩
successors = ⟨⟨1⟩, ⟨1⟩⟩

∧
∧
∧

failures = {2}
predecessor = ⟨1, 0⟩
successors = ⟨⟨1⟩, ⟨ ⟩⟩

∧
∧
∧

failures = {}
predecessor = ⟨2, 0⟩
successors = ⟨⟨1⟩, ⟨1⟩⟩

∧
∧
∧

failures = {2}
predecessor = ⟨2, 0⟩
successors = ⟨⟨1⟩, ⟨ ⟩⟩

∧
∧
∧

failures = {}
predecessor = ⟨0, 0⟩
successors = ⟨⟨1⟩, ⟨1⟩⟩

∧
∧
∧

failures = {2}
predecessor = ⟨0, 0⟩
successors = ⟨⟨1⟩, ⟨ ⟩⟩

∧
∧
∧

(b) Expanded view of the top left highlighted subgraph on fig. 4.1a. Each node shows
a state with the value of its variables.

Figure 4.1: TLA+ state diagram for failures configuration with N = 2 and
K = 2
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Chapter 5

Conclusion

In this project we have studied how the Chord algorithm can be modified to
account for node failures by introducing a successor list at each node. This
has been implemented as a formal specification using the specification language
TLA+. The specification has been verified to be correct by the TLC model
checker, for networks with up to 4 nodes, enough nodes to say that the specifi-
cation can be assumed to be correct with a high confidence.

Throughout the project, the complexity of the specification had to be hold
at a minimum, in order to run the model checker within a reasonable time. This
limitation has meant that some parts of the protocol has been simplified and
assumptions has been made. Extensions to the protocol like the finger table has
not been considered as verifying that alone, without modeling failures, already
takes a lot of time.

Also the communication model is assumed to be synchronous, which means
that messages sent arrive instantly at the receiving node. The failure model of
the specification is also limited to only node failures. This means that other
kinds of failures, such as the links between nodes failing, or nodes omitting
sending or receiving messages are not considered.
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Appendix A

Pseudo code for Chord with
multiple successors

Algorithm 5 Locate the successor list of the first k successors to key

Variables: successors[1..k ], predecessor

Require: key ̸= i
function i .LocateSuccessors(key)

s ← successors[1]
if key ∈ (i , s] then

return successors
else

return s.LocateSuccessor(key)
end if

end function

Algorithm 6 Creating a new ring and joining an existing one.

Variables: successors[1..k ], predecessor

function i .CreateNewRing
predecessor ← ⊥
successors ← [i ]

end function
function i .JoinRing(j ) ▷ where j is any node on the ring

predecessor ← ⊥
successors ← j .LocateSuccessors(i)

end function
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Appendix B

TLA+ specifications

SpecAnyRing
SuccessorAnyRing

∆
=

∧ TypeInvariants
∧ ExactlyOneRing
∧OrderedRing
∧OnlyAppendages
∧ ∀ i ∈ Nodes : HasFailed(i) =⇒
∧ successors[i ] = ⟨⟩
∧ predecessor [i ] = 0

PredecessorSafety
∆
=

∧ PredecessorTypeInvariant
∧ ReachableFromPredecessor
∧ PredecessorInRing

SpecAnyRing
∆
=

∧ SuccessorAnyRing
∧ PredecessorSafety
∧2[unchanged vars]vars

Spec B.1: Specification for a static Churn configuration.
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